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Abstract—Maximizing supercomputing throughput within
power and cooling limits is a key challenge for exascale sys-
tems, which are increasingly constrained by power rather than
performance. Effective power management is essential. Whereas
power capping has been well-known to increase energy efficiency
and reduce energy costs, power variability has emerged as
an orthogonal driving force on cost through service pricing
models and increased electronic component wear out. This paper
presents a performance-power-efficiency model that combines
application performance, empirical power usage, power vari-
ability, and energy efficiency in a single methodology to enable
optimization of HPC system operation. Using seven workloads
and three microbenchmarks, we demonstrate the ability of our
methodology to understand performance and energy efficiency
through power capping on NVIDIA A100 GPUs and motivate
future system design and execution policies. We show that
power capping can reduce power spikes without sacrificing
energy efficiency, and power capping can potentially improve
power-constrained system throughput by 1.8× based on capped
maximum node power and 2.5× based on peak node power usage.

I. INTRODUCTION

The United States accounts for roughly 40% of the global
data center market. As the demand for data storage and pro-
cessing power continues to grow exponentially, so does their
energy consumption [1]. According to McKinsey, demand
(measured by power consumption based on the number of
servers a data center can house) is forecast to grow approx-
imately 10% each year through 2030, reaching 35 gigawatts
(GW) by 2030, up from 17 GW in 2022 [2]. Many studies also
demonstrate that future exascale systems are not constrained
by performance but by power consumption [3, 4].

Figure 1 describes the system performance, power and
efficiency over the last decade according to the Top500 [5].
As GPUs become more popular, they not only boost the
system performance (y-axis) and efficiency (diagonal) but also
increase the system power demands (x-axis). The trend of the
leading supercomputers goes in the upper right direction in that
figure, which indicates technological innovation to increase
power efficiency and a larger financial budget to build and
maintain large-scale systems. It is well known that facility
infrastructure and system size are conservatively dictated by
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TDP (Thermal Design Power). To accommodate larger sys-
tems, facility infrastructure must be upgraded — a cost com-
parable to acquiring a new supercomputer. When infrastructure
is over-provisioned, and acquisitions are constrained to meet
infrastructure, costs are inflated, and potential supercomputing
performance is limited. Clearly, there are opportunities to
intelligently and safely exploit over-provisioned infrastructure
to increase HPC system throughput.

Fig. 1: PFlops as a function of megawatts with diagonals being
energy efficiency (GFlops/Watts). Efficiency has improved by
a factor of 100 over the past decade, driven by the shift from
CPUs to GPUs as the primary computing resource.

However, Figure 1 provides only a high watermark for
power consumption versus the daily demand on a data center
from the typical HPC workload. According to the report from
NERSC [6], the average power usage of a 2021 supercomputer
is 3.2 MW, well less than its 6.9 MW TDP. Thus, production
power drawn from HPC resources is often significantly less
than the TDP. This is because over-provisioned power in
data centers is often implemented to accommodate sudden
power demand increases, such as power spikes, which are
sudden, short-term, and often intermittent increases in power
consumption.

Consequently, over-provisioned infrastructure can be wasted
during off-peak periods. Advanced power management tech-
niques have been introduced to address the challenge of low
power utilization. These approaches co-schedule high-power
and low-power jobs to minimize the power wasted by idle or
underutilized components and reduce system power fluctua-



tions. While such a method may work well on a fixed system,
it no longer applies if one wants to increase potential system
throughput while keeping the total power budget constant.

Power capping [7] is a technique to set an upper limit to
the power that a device can consume. Power capping allows
practitioners to procure higher throughput systems that would
otherwise be power-prohibitive based on node TDP. That is, by
optimizing energy efficiency through power capping, one can
increase potential system throughput for a fixed HPC system
power budget.

Whereas power and energy efficiency have an obvious
correlation with facility infrastructure and energy costs, power
variability is emerging as a third driver in HPC system oper-
ational costs. High power variability can increase electronic
component failure rates due to thermal stress, but power
providers may motivate customers to minimize highly variable
demands on the power grid. Although power capping has been
shown to mitigate such power spikes [8, 9], it is important to
integrate power variability into operational cost models.

To that end, it is imperative one provide a methodology
for analyzing how multi-objective power capping constrains
application performance, power spikes and system throughput.
Our contributions include:

1) We develop a methodology for evaluating and visu-
alizing the achieved application performance (time-to-
solution) and power efficiency (joules-to-solution) under
different caps on node power.

2) We develop a methodology for quantifying power spikes
in a scalar metric and introduce a cost-based incentive
model that integrates the proposed power spike metric
with energy consumption. This model encourages data
centers to maintain stable power usage, which can help
reduce component wear-out and facilitate the adoption of
power management techniques, such as power capping.

3) We propose throughput-enhancing policies that maxi-
mize facility-wide power infrastructure utilization for
future procurement. Under a fixed power budget, we
demonstrate that limiting node (GPU) power based on
application characteristics can improve system through-
put by 1.8× relative to node TDP and 2.5× relative to
maximum node power usage.

II. RELATED WORK

As power consumption becomes a common concern for
future exascale systems, power management has become an
important aspect of data center design and operation. Over
the decades, most of the HPC data centers have focused on
improving the Power Usage Effectiveness [10, 11].

Despite the above efforts, production power drawn from
HPC resources is still significantly less than the TDP. Several
recent studies focusing on leadership-class supercomputers
highlight the ever-growing costs of power [12–14]. Many
studies have been conducted on power management and
scheduling. Power-budget-guided job scheduling policies that
maximize overall job performance are discussed in [15–17].

A data-driven approach [18] was proposed for power man-
agement based on profiling data of production job runs. The
Turbo Control and CPUJailing method was used at Google’s
data center and provides a 9% power saving on CPUs.
Kumbhare et al. proposed dynamic power management for
value-oriented schedulers in power-constrained HPC systems.
A space-shared scheduling using a greedy-based co-run job
selection and resource allocation policy was demonstrated
in [19]. There is also work studying the variable of power
consumption among traditional HPC simulations and modern
machine learning [20]. Some efforts have leveraged machine
learning to accurately predict the future application power
consumption for planned power scheduling per application
basis [21–29].

Ramesh et al. proposed a model of the impact of dynamic
power capping on application progress [30]. Lefurgy et al. pre-
sented a technique that controls the peak power consumption
of a high-density server. Petoumenos et al. and Borghesi [31]
systematically analyze the strengths and weaknesses of the
power capping mechanism, in terms of energy efficiency,
overhead, and predictable behavior [32]. Chu et al. perform
analysis of node energy and job failures [33]. Ciesielczyk et al.
compared different power capping methods, including random
power capping and greedy power capping, using benchmarks
and demonstrated that the proposed MILP outperforms oth-
ers [34]. However, they cannot guarantee sustained bench-
mark performance under a power cap. Li et al. proposed a
throughput-optimized, quality-of-service-aware power capping
for CPUs [35]. Krzywaniak et al. developed a tool for NVIDIA
GPUs to optimize the efficiency that reduced energy by 18%
with a commensurate 20% performance degradation on a
variety of benchmarks [36]. Zhao et al. conducted an analysis
of VASP and MILC on A100 GPUs [8, 9]. Joseph et al.
investigate techniques that can be used to reduce the energy
consumption of common NLP applications, and demonstrate
that GPU power capping can enable a 15% decrease in energy
usage with marginal increase in overall computation time when
training a transformer-based language model [37]. Kumb-
hare et al. proposed prediction-based techniques for increasing
power oversubscription in cloud platforms, while protecting
important workloads performance [38]. Zhang et al. proposed
“zero-reserved-powe” data centers and the Flex system to
ensure that workloads still receive their desired performance
and availability [39]. Flex leverages the lower infrastructure
availability requirements of software-redundant workloads and
combines static workload placement with dynamic power
management to safely allocate the reserved power. Theo et
al. showed that modifying the input data to GEMMs, while
maintaining the matrix shapes and sizes can notably change the
power consumption of these kernels [40]. Yang et al. proposed
an accurate and convenient energy measurement for NVIDIA
GPUs [41]. Solorzano et al. [4] discuss the deployment of an
incentive-based power efficiency mechanism on the Fugaku
supercomputer (CPU), also demonstrating that the “one-size-
fits-all” power-control mechanism for saving power is likely
to be not optimally effective in practice.

2



Most existing studies focus either on analyzing the power
consumption of specific workloads or on co-scheduling high-
power and low-power jobs to minimize current system power
fluctuations by predicting job power usage. These approaches
heavily depend on accurate power predictions. Power capping
research, on the other hand, typically examines application en-
ergy consumption and performance degradation on the current
system, but rarely explores power spikes (or variations) or ar-
ticulates throughput-enhancing policies for future systems that
leverage the full capacity of the facility power infrastructure.

Compared to existing studies, our work goes beyond prior
studies by introducing a high-level methodology to visualize
application performance and power efficiency under different
node-level power caps. Additionally, we define a scalar metric
to quantify power spikes, which can have detrimental effects
on data centers and utility grids —- an increasingly pressing
issue as HPC scales toward exascale. To address this, we
propose a cost-based incentive model that encourages data
centers to maintain stable power usage, potentially reducing
hardware wear-out and promoting the adoption of power man-
agement strategies such as power capping. Finally, we present
throughput-enhancing policies designed to optimize facility-
wide power infrastructure utilization, providing insights for
future system procurement.

III. METHODOLOGY

To analyze the impact of power capping, it is essential to un-
derstand the relationship between power, performance, energy
efficiency, and power spikes. We will discuss each and then
demonstrate the performance-power-efficiency model, which
ties a triplet of the application’s four-element [performance,
average node power, peak node power, capped maximum node
power] vector mapped into a two-dimensional space. Last, we
will introduce a metric for quantifying power spikes.

A. Application Performance Metric

Microbenchmarks such as DGEMM and STREAM, report
simple performance metrics (TFLOP/s and GB/s) in their stan-
dard output. Complex applications may find it hard to define
a performance metric; here, we use the inverse of reported
run time as a performance metric for the tested applications.
Thus, for each application, a higher value of 1

time indicates
a shorter completion time and a higher performance. As the
name suggests, the “performance relative to the uncapped node
performance” normalizes the achieved performance (Perfor-
mancecapped) to the performance achieved without a node
power cap (Performanceuncapped), as Equation 1 shows. Note
that the relative performance of an uncapped application is
always equal to one.

Relative Performance =
Performancecapped

Performanceuncapped
(1)

B. Application Power Metrics

We obtain three power usage metrics for every application
execution: empirical average node power usage, empirical
peak node power usage, and capped maximum node power.

Each element of the triplet can be useful in different scenarios.
Procurement can use node power cap or max power to size
a system. The average node power is used for cost power
studies. Operations might look at the maximum node power.
We will thoroughly outline the power measurement methods
in Section IV.

C. Application Energy Efficiency Metric

Energy efficiency is the ratio between application perfor-
mance and node power. The relative energy efficiency is
defined as energy efficiency relative to the uncapped node
efficiency, which normalizes the achieved efficiency (Effi-
ciencycapped) to the efficiency achieved without a node power
cap (Efficiencyuncapped), as Equation 2 described. The relative
efficiency of an uncapped job is always equal to one.

Relative Efficiency =
Performancecapped ∗ Poweruncapped

Performanceuncapped ∗ Powercapped
(2)

D. Put all together: Performance-power-efficiency model

Figure 2 introduces some core concepts and visualization
techniques that will be used throughout the paper. For a given
power cap, each application has three dots: average node
power, peak node power, and capped maximum node power.
As illustrated by the triplet (marked with 1 ) in Figure 2a,
these three dots share the same y-coordinate (performance
relative to the uncapped node performance) because they cor-
respond to the same job, but will have different x-coordinates
(because they measure different aspects of node power).

The diagonal lines denote the isocurves of relative energy
efficiency in Figure 2b. As the diagonal lines move to the
upper left, it indicates a higher efficiency, as one can finish
the same amount of work using less energy.

If one were to cap node power, a new triplet would be
measured. If the application has no performance degradation
under this power cap, then new dots (marked as 2 in
Figure 2c) will have the same y-coordinate as ones obtained
without a power cap. However, since a power cap can only
reduce power and never increase it, applying a power cap will
inevitably shift each point in the triplet to the left (resulting
in lower average, peak, and capped maximum power), while
preserving the relative order (the average can never exceed the
peak, and the peak can never exceed the maximum).

If, on the other hand, performance degrades at the same
rate as the node powers (average, peak, capped maximum
node), the new triplet (marked as 3 in Figure 2d) will move
diagonally down and to the left (lower node power and lower
performance). The solid grey diagonal line thus represents
constant energy and constant energy efficiency. The green
zone in Figure 2d highlights the region in which the relative
performance is more than 0.5× (often a minimum acceptable
threshold) and the relative energy efficiency is greater than
1.0×. Similarly, the yellow zone represents the region where
the relative performance falls below 50% yet the reduction in
power still exceeds the reduction in performance (more energy
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Fig. 2: (a) For a given power cap, each application is characterized by four terms: average node power, peak node power,
capped maximum node power, and performance relative to uncapped power. When plotted in the power-performance space,
the four terms are grouped into triplets of three dots with a common y-coordinate. (b) One may define isocurves of increasing
energy efficiency relative to uncapped power noting on which curves average, peak, and capped maximum node power fall.
When node power is capped, a new triplet is defined. (c) Application attains same performance under reduced power. (d)
Triplet moves diagonally when application performance degrades proportionally to power (constant energy). Green and yellow
zones indicate the severity of performance degradation, and both have a greater unity energy efficiency. The red zone represents
significant performance degradation and less unity energy efficiency.

efficient). The red zone is the region where the power reduction
is less than the decrease in performance (less energy efficient).

E. Power Spikes Metric

Power spikes are short but frequent surges in power con-
sumption. Therefore, it is crucial to characterize this pattern to
distinguish power spikes from sustained periods of high power
usage. Both can cause significant power variation, where peak
power usage far exceeds the average power usage. However,
frequent short power spikes are particularly concerning, as
their cumulative impact can accelerate wear and tear on
electronic components and pose challenges in detection, poten-
tially leading to long-term degradation of hardware reliability.

As such, we create a scalar power spike metric (PSM)
to capture the short frequent power spikes. This metric is
based on the integral of the rate of change of power with
respect to time (dPdt ), which measures how quickly power
fluctuates. A direct integration of dP

dt would yield the power
ramp, which could result in zero for a full application run.
To focus specifically on power spikes, we ignore power dips
using a ReLU (Rectified Linear Unit) function. The expression
is defined as Eq 3. dP

dt represents the rate of power change over
time. ReLU(dPdt ) is the ReLU function. If dP

dt is positive, it
returns dP

dt . Otherwise, if dP
dt is negative, it returns 0. Since

PSM is sensitive to the duration of the run, its value will
change depending on how long the workload executes. Later,
we will use this metric in the unified cost model (Section V-E).

PSM =
( ∫

ReLU
(
dP

dt

)
dt
)
× 10−6 (3)

Table I summarizes the implications of the power spike
metric and the triplet in Figure 2. A small ratio of capped
maximum node power and peak power (close to one) indicates
the GPUs are operating near the power cap, while a large ratio
of capped maximum node power and peak power (bigger than
one) indicates the GPUs are operating well below the power
cap. A small ratio of peak and average (close to one) indicates
the application has less power variation. Conversely, a big ratio
of peak and average (bigger than one) indicates the application
has a large power variation. Such large power variations can
come from either multiple rapid and substantial power spikes
or one single power increase that lasts a long time. The power
spike metric can further distinguish the two. A small value
(close to zero) of power spike metric (watts) indicates the
application has less spikes. Conversely, a big value (bigger
than zero) indicates the application has multiple rapid and
substantial power spikes.

IV. EXPERIMENTAL SETUP

We describe the system architecture, the method to apply
power capping and power measurement, and the workloads
used for evaluations in this section.

A. System architecture

Results presented in this paper were obtained on the GPU-
accelerated partition on Perlmutter (PM-GPU) at NERSC [42].
Each of the PM-GPU nodes contains one AMD Milan pro-
cessor and four NVIDIA Ampere A100 accelerators. The
GPUs within a node are connected by NVIDIA’s NVLink3
interconnect.
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TABLE I: Implications of the power spike metric and the triplet in Figure 2. The power spike metric can further tell whether
the large power variation (high max/avg) comes from multiple rapid and substantial power spikes or one long-lasting power
increase.

Metric small large
Capped Max:Peak GPUs reach near maximum power GPUs operating well below max power

The black and red dot are close in Figure 2 The black dot is far from the red dot
Peak:Average Low power variation High power variation

The blue and black dot are close The blue dot is far from the black dot
Power spike metric (MW) Power spikes are less significant Frequent and/or substantial power spikes

B. Power Measurement

We use NERSC’s Operations Monitoring and Notification
Infrastructure (OMNI [20, 43]) for node power measurement,
with Cray Telemetry [44] data serving as its input. The
measured node power is the total input power to the node,
including power on CPU, memory, GPUs, NICs, etc. Cray
Telemetry measures instant power. As a larger time inter-
val can smooth out power spikes by averaging fluctuations
over time, OMNI provides real-time power usage reports for
each job every two seconds. The maximum power usage is
determined as the highest recorded power value across all
timestamps, while the average power usage is calculated as the
mean of all recorded power values over time. Thus, throughout
the paper, the average and peak node power are measured
values.

We validated the results by comparing power meter readings
(+-0.5% accuracy) from a cabinet with the aggregated node
power reported by Cray telemetry. We compared the average
node power over a one-hour period. On average, Cray teleme-
try reports power consumption values that are 11% lower than
those measured by the power meters, with a standard deviation
of 3%. The Cray telemetry is lower as it excludes the power
for the cooling subsystem (pumps, etc.).

C. GPU Power Capping

By default, on one PM-GPU node, each of the four GPUs
runs at 400 Watts, for a total node power of 2340 Watts.
Thus, the four GPUS consume 1600 Watts on a node and
the rest contribute 740 Watts. NERSC provides the capability
of GPU power capping via Slurm within the range of 400
Watts to 100 Watts. Thus, throughout the paper, we conduct
experiments with GPU power capping from 400 Watts (TDP)
to 100 Watts with an interval of 50 Watts. Thus, the corre-
sponding capped maximum node power can be obtained by
4 ∗ Capped GPU Power + 740.

D. Workloads

We selected seven workloads from the N10 Benchmark
Suite [45] to represent typical workloads that run on Perlmut-
ter. The detailed workload and micro-benchmarks characteris-
tics are listed in Table II. Furthermore, the dataset size for the
workloads is defined in [45]. BerkeleyGW (BGW) is a many-
body perturbation theory code for excited states [46]. BGW’s
Epsilon module computes the material’s dielectric function.
The Sigma module uses the output of the preceding steps to

TABLE II: Overview and configuration of the evaluated
workloads and micro-benchmarks. Each workload and micro-
benchmark includes the dataset size, the workload charac-
teristic (memory or compute intensive) and the performance
metric evaluated for the power capping analysis. Note that all
experiments use one full Perlmutter GPU node.

Workload Dataset Size Bottleneck Perf. Metric
BerkeleyGW-Epsilon Si214 compute 1/time
BerkeleyGW-Sigma Si214 compute 1/time
LAMMPS small compute 1/time
MILC-Generation tiny memory 1/time
MILC-Spectrum tiny memory 1/time
DeepCAM Mini memory 1/time
NeMo-GPT3 5 billion params compute 1/time
Micro benchmarks
cuBLAS DGEMM TF64 16,384×16,384 compute TFLOP/s
Magma DGEMM FP64 M=N=K=19520 compute TFLOP/s
STREAM Triad 1.67B words memory GB/s

compute the electronic self energy. LAMMPS is a classical
molecular dynamics (MD) code that models ensembles of
particles in a liquid, solid, or gaseous state [47]. MILC is
a simulator for dimensional SU(3) lattice gauge theory [48].
Generation is performed by MILC’s su3 rhmd hisq appli-
cation, which uses rational function approximations for the
fermion determinants and the Rational Hybrid Monte Carlo
(RHMC) algorithm with the HISQ action. The spectrum stage
is performed by MILC’s ks spectrum hisq application, which
inverts the staggered fermion matrix for the HISQ actions and
measures the correlators that estimate physical properties. The
DeepCAM benchmark trains a deep learning model to identify
extreme weather phenomena (tropical cyclones, atmospheric
rivers) in CAM5 climate simulation data [49]. The NeMo
Framework [50] focuses on foundation model training for
generative AI models. We use the GPT model training, a
decoder-only Transformer model.

We also experimented with three micro-benchmarks, in-
cluding DGEMM using cuBLAS FP64 on tensor cores with
random input, DGEMM FP64 on CUDA cores, with random
inputs, using the Magma library [51], and STREAM on GPUs.

In all experiments, the application is executed on four GPUs
on a single node. Prior studies using multiple nodes with
the N10 benchmark suite [52] have demonstrated that power
consumption trends remain consistent between single-node
and multi-node setups. Moreover, multi-node experiments in-
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Fig. 3: Node power usage over time. BGW-Epsilon, BGW-Sigma, and MILC-Generation have relatively significant power
spikes, while applications like LAMMPS and MILC-Spectrum, exhibit relatively flattened (slow-varying) power usage timeline.
Imposing a power cap of 1540 watts on a node can lead to a significant increase in the runtime of applications like NeMo-
GPT3.

troduce additional complexities, such as network communi-
cation overhead and the balance between computation and
communication.This paper focuses on power capping at the
node level.

V. RESULTS

We analyze the performance and efficiency of seven GPU-
enabled workloads and three GPU-enabled microbenchmarks.
Following this, we examine the PSM under power cappings
and introduce a unified cost model designed to promote stable
power usage in data centers. Finally, we explore three power
capping strategies —- uniform power capping, maximum
throughput capping, and minimum power spike capping —-
demonstrating that maximum throughput capping outperforms
the other approaches.

A. Power Usage Timeline

Figure 3 shows the power usage timeline for the ten selected
benchmarks running at an uncapped node power (2340 Watts)
and a capped node power of 1540 Watts (200 Watts per GPU).
The microbenchmarks exhibit stable power usage over time.
However, significant power spikes are observed in workloads
such as BGW-Epsilon, BGW-Sigma, and MILC-Generation.
In contrast, workloads like LAMMPS and MILC-Spectrum
exhibit relatively steady, slow-varying power usage over their
timelines. While DeepCAM and NeMo-GPT3 also show slow-
varying power usage, they experience more power spikes
compared to LAMMPS. When the node power is capped at
1540 Watts, there is an immediate reduction in power variation
over time. However, this reduction may be accompanied by an
increase in application runtime, as seen with NeMo-GPT3.

B. Performance

The trajectory in Figure 4 illustrates relative performance
under power capping, with each point representing a mea-
surement. Theoretically, intersections should not occur since
capped maximum node power (red) > peak node power usage
(black) > average node power usage (blue).

The DGEMM and STREAM represent two typical work-
loads: compute-intensive and memory-intensive. One can im-
mediately observe that DGEMM is more sensitive to power
capping than STREAM on the last three plots in the second
row of Figure 4. As the capped node power goes down, the
achieved performance also decreases. Conversely, STREAM
maintains its peak bandwidth until the capped node power
reaches 1140 Watts (100 Watts per GPU).

Real workloads should have a similar trend depending on
whether they are compute-intensive or memory-intensive. One
can immediately observe that the compute-intensive work-
loads, LAMMPS and NeMo-GPT3 have a rounded curve like
DGEMM. Meanwhile, memory-intensive workloads, such as
MILC-Generation, MILC-Spectrum, and DeepCAM, have a
plateau-shaped curve like STREAM.

C. Energy Efficiency

Figure 4 also shows the workload energy efficiency with iso-
efficiency curves (diagonal lines), where the higher efficiency
is achieved in the upper left direction. Maximum energy effi-
ciency for each performance-power trajectory (average power,
peak power, maximum power) is achieved at the point where
the trajectory intersects the highest efficiency iso-curve. We
highlight some representative dots, though the same principle
applies to all other dots. For example, DGEMM TF64 achieves
peak efficiency at a capped node power of 1740 Watts, deliv-
ering 1.16× higher efficiency than the one without capping. It
means DGEMM consumes the lowest energy cost using 1740
Watts node power compared to other power caps. However,
DGEMM TF64 has a 14% performance degradation in that
case. STREAM achieves its highest efficiency and maintains
its peak bandwidth with a capped node power of 1340 Watts.

All seven applications begin to lose efficiency dramatically
around the node power of 1540 Watts or 1340 Watts. Using
LAMMPS as an example, when the node power is capped
to 1540 Watts, it achieves the highest energy efficiency:
1.2×, 1.8×, and 2.1× for capped maximum node power,
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Fig. 4: Achieved node performance relative to uncapped performance in a log-log scale. The diagonal lines (dotted grey)
represent energy efficiency. The big gap between the peak node power (black) and average node power (blue) indicates a
significant power variation. Additionally, a small gap between the capped maximum node power (red) and peak node power
(black) means that the GPUs are operating near maximum power.

peak node power, and average node power, respectively —
- outperforming the efficiency observed with uncapped node
power. However, the efficiency begins to drop as the node
power cap is reduced. For instance, the efficiency using 1140
node power drops significantly to 0.6× for capped maximum
node power and 1.0× for peak and average node power,
as shown in Figure 2. This results in notable performance
degradation and energy efficiency falling below unity.

Ultimately, practitioners must balance energy, infrastructure,
and safety margins when deciding which energy efficiency
trajectory (red, black, blue) will guide their capping decisions.
Capping based on the blue trajectory will minimize total
energy. Capping based on the red line provides energy savings
with strong guarantees on peak system power. Capping based
on the black curve increases energy savings, but only provides
an expectation of peak system power.

D. Power spikes

To obtain the power spike metric, we use the two-second
time interval power data as the input for Equation 3. Figure 5
illustrates how the power spike metric changes under power
capping for all workloads and microbenchmarks. They all
achieve the lowest power spike metric with a power cap of
1140 Watts. The rapidly decreasing power spike metric of
BGW-Sigma indicates a significant reduction in power spikes,
aligned with Figure 3. DeepCAM also has a reduced PSM
by one magnitude, reflected in the decreasing gap between
peak and average node power in Figure 4. LAMMPS has
a low pace in decreasing power spike metric because it is
dominant by the slow-varying power usage. The PSM of

STREAM is higher than that of DGEMM, which appears
contrary to the observation in Figure 3, demonstrating that
DGEMM consumes more power than STREAM. STREAM’s
shorter runtime leads to greater power fluctuations over time.

Applications with more power spikes experience a signifi-
cant decrease in PSM, with the metrics dropping by an order
of magnitude for BGW-Epsilon, BGW-Sigma, and Nemo-
GPT3. In contrast, applications with more stable power usage,
such as DeepCAM and LAMMPS, exhibit less noticeable
reductions in the PSM when power capping is applied. Overall,
power capping effectively reduces power variation across all
evaluated workloads with different power patterns.

E. Unified Cost Model

Data centers often operate within predefined operating
power budgets. Exceeding these allocated power limits can
result in additional charges, as facilities may impose fees for
surpassing reserved power thresholds. Consequently, the total
cost of operating a data center encompasses both the energy
consumed, measured in kilowatt-hours (kWh), and expenses
arising from power variations.

We propose a unified cost model using the total energy
consumption and the power spike metric (PSM) we de-
fined. The cost is calculated using the formula cost = a ·
energy consumption + b · PSM. Practitioners are encouraged
to adjust these coefficients as needed for their specific appli-
cations, or adjust application weights for their systems.

Figure 6 illustrates the relationship between cost in dollars,
total energy consumption (kWh), and power spike metric
(PSM) in megawatts using seven workloads. The left direction
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Fig. 5: Power spike metric for all workloads and microbenchmarks in a log-log scale. All applications achieve the lowest
power spike metric at 1140 Watts, and the gap between average and peak node power dots is the closest using 1140 Watts
node power. The rapidly decreasing power spike metric indicates a significant reduction in power spikes, such as BGW-Sigma.
When an application (e.g. LAMMPS) is characterized by slowly-varying power usage, one observes a slow reduction in the
power spike metric.

(a) $0.10 per kWh for energy and $0.01 per MW for PSM (b) $0.10 per kWh for energy and $0.10 per MW for PSM

Fig. 6: The isocurves on the plot represent cost measured in dollars (log-log scale). The upper left region represents a “race-to-
halt” scenario, and the lower left region indicates reductions in both energy consumption and PSM. Dots at the top correspond
to nodes operating with uncapped power. Implementing appropriate power capping can lower both total energy cost and power
variation, effectively reducing the overall cost.

in Figure 6 indicates reduced energy and the lower direction
represents reduced PSM. Corresponding to Figure 2, the red
zone represents increased energy consumption. Dots within
this zone should appear relatively to the right in Figure 6.
Conversely, the yellow and green zones in Figure 2 indicate
decreased energy consumption, and dots within these zones
should be positioned to the left in Figure 6. In the same
manner, the upper left direction represents race-to-halt, which
uses less energy but high power variation. The lower left

direction then refers to the reduced energy and PSM. The
isocurves represent the cost in dollars.

The top dots for each workload represent nodes operating
with uncapped power. Applying power capping typically shifts
these dots downward or to the lower left, signifying a reduction
in total energy cost and power variation, thereby lowering the
overall cost. However, as node power is further capped, the
dots shift toward the lower right. This indicates that costs start
to rise due to increased energy consumption.
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Figure 6a and Figure 6b illustrate the impact of varying the
PSM charging rates —- $0.01/MW and $0.1/MW, respectively
—- while maintaining a constant energy charging rate of
$0.10/kWh. Increasing the PSM charging rate by a factor of
10× results in more crowded isocurves at the upper end of
the spectrum (cost is more sensitive to power variation). For
example, in Figure 6a, BGW-Epsilon operating with uncapped
node power incurs a cost of $0.0066 at a PSM rate of 0.01,
whereas in Figure 6b, with an increasing PSM rate of 0.10,
the cost grows to $0.008. Therefore, by assigning costs to
PSM, data centers are incentivized to maintain more consistent
power usage, potentially reduce component wear out, and
encourage the adoption of power management techniques such
as power capping.

F. System Power Capping

There are three ways to apply power capping to a sys-
tem: uniform power capping, maximum throughput capping,
and minimum-power-spike capping. Uniform power capping
means that all nodes in that system are capped with the same
power. Maximum throughput capping caps a node power based
on workload requirements to maximize energy efficiency and
system throughput. As the name suggests, minimum-power-
spike capping aims to smooth out the power spikes by finding
the node power with the lowest power spike metric value.
Table III lists the node power of the maximum throughput
capping. The minimum-power-spike capping always caps a
node to 1140 Watts as it achieves the lowest PSM.

TABLE III: Node power of maximum throughput power
capping. It selects appropriate power limits based on work-
load requirements, resulting in higher system throughput and
improved workload energy efficiency.

Workload Watts Workload Watts
BGW-Epsilon 1340 BGW-Sigma 1340
DeepCAM 1340 LAMMPS 1540
MILC-Generation 1540 MILC-Spectrum 1540
NeMo-GPT3 1740

Figure 7 plots the average node power, average node per-
formance, average node efficiency, and average power spike
metric for all the capping strategies. Here we use a uni-
form geometric average of the seven applications (excluding
STREAM and DGEMM) to calculate the average numbers.
It is worth noting that users can add and adjust application-
specific weights to suit their specific workload. Again, each
subfigure contains three lines that represent the average node
power, peak node power, and capped maximum node power.

Figure 7a and Figure 7b illustrate how the average node
performance decreases as the node is capped to lower power
levels. Initially, the average node efficiency increases (right),
but it eventually decreases when the node is capped to a very
low power (left). Uniform power capping achieves the highest
efficiency at a node power of 1540 Watts, which we designate
as the best uniform capping. Thus, one can immediately find
that the maximum throughput capping achieves a higher node

efficiency than the best uniform capping. We plot the average
node power of maximum throughput since workloads are
capped into different node powers.

Figure 7c shows the average node power relative to un-
capped power along with relative performance to uncapped
performance. The maximum throughput capping uses 5% less
node power compared to the best uniform power capping,
resulting in a 1% node performance loss. The maximum
throughput capping also outperforms best uniform power
capping because it achieves the highest efficiency as visualized
in Figure 7d. Compared to the uncapped system, the maximum
throughput capping has 15% performance degradation but uses
only 63% of the uncapped system power.

Uniform power capping may also result in non-uniform
improvements in throughput among workloads. As an exam-
ple, let’s take the best uniform capping as an example. The
diagonals in Figure 4 indicate the workload energy efficiency.
One can immediately observe the best uniform capping fails to
maximize BGW-Epsilon, BGW-Sigma, DeepCAM and NeMo-
GPT3 energy efficiency. In contrast, the maximum throughput
capped nodes to different powers maximize application effi-
ciency and system throughput.

The minimum-power-spike technique effectively minimizes
power variation. Such implication can be immediately ob-
served in Figure 7e and Figure 7f. Figure 7e further tells that
a significant power capping can reduce power spikes aggres-
sively, such as limiting a node’s power to 1140 Watts has the
lowest power spike metric value. This method improves power
predictability by maintaining a more consistent power pattern.
However, as illustrated in Figure 7f, this approach comes at the
cost of lower node efficiency compared to an uncapped system.
While capping at 1140 Watts reduces spikes effectively, it
remains less efficient than the other two approaches. Maximum
throughput capping is also more effective than the best uniform
power capping in reducing power fluctuations.

Practitioners can achieve higher system throughput by
procuring and running more nodes with capped node power.
For instance, assuming the relative energy efficiency remains
equal in both scenarios —- running two nodes at 1140 Watts
each or one node at 2340 Watts —- both configurations stay
within a power budget of 2340 Watts. Two nodes running at
1140 Watts can complete two tasks using 2× time, effec-
tively doubling the system throughput compared to a single
node at 2340 Watts, while consuming the same total energy.
Following the same manner, using uncapped node power
(1.0× throughput) as the baseline, we compare it against three
proposed power capping methods. As shown in Figure 8,
maximum throughput capping improves system throughput
by 1.8× based on capped maximum node power and 2.5×
based on peak node power, outperforming uniform power
capping by 20%. The minimum-power-spike strategy results
in the smallest power variation, as shown in Figure 7, but it
also delivers the lowest system throughput among the three
methods.

Table IV outlines the potential benefits and challenges of
implementing power capping, considering factors such as node
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(a) Average Node Performance vs. Node Power

(b) Average Node Efficiency vs. Node Power

(c) Average Node Power
vs. Node Performance

(d) Average Node Efficiency
vs. Node Performance

(e) Average Node Power
vs. Power Spikes Metric

(f) Average Node Efficiency
vs. Power Spike Metric

Fig. 7: Average node performance, efficiency, power consumption, and power spike metric for the seven evaluated workloads
under power capping. Averages were computed using geometric means and, where applicable, normalized to the uncapped
power values. All plots are in log-log scale. (a) and (b) illustrate the normalized average node performance and efficiency
as functions of capped node power. (c) and (d) present the normalized average node power and efficiency as functions of
average node performance. (e) and (f) display the normalized average node power and performance as functions of the power
spike metric. The dotted gray lines represent the best uniform power capping (1540 Watts node power), along with maximum
throughput power capping and minimum-power-spike capping. Maximum throughput capping outperforms the best uniform
power capping in performance, efficiency, and power variation.

TABLE IV: The potential advantages and challenges of different power capping strategies.

Strategy Throughput Benefits Challenges
based in average power 2.7× maximizes reduction in energy costs; requires modest over-provisioning of infrastructure as

maximizes system size peak power can greatly exceed average power
based on peak power 2.5× significantly reduces energy costs requires some over-provisioning of infrastructure as

avoids over-provisioning peak power may exceed benchmark peak power
based on capped maximum node power 1.8× power guaranteed never to exceed expectation; on average, infrastructure is still

modest reductions in energy costs significantly over-provisioned.

TDP, maximum power usage, and average power usage. As
Figure 4 shows, the gap between the capped node power
and maximum node power usage is large for all cases. It
indicates a large ratio of capped node power and max node
power in Table I. Therefore, power capping based on capped
node power can safely enhance system throughput, with plenty
of power resources to support activities requiring additional
power, such as application profiling. Using the maximum
node power usage for capping can more aggressively reduce
over-provisioning and improve system throughput. However,
this approach risks power outages due to additional power
requirements. Similarly, power capping based on the average
node power usage is even more aggressive, necessitating a
safety margin or battery backup to manage peak loads and
activities requiring extra power.

It is also worth mentioning that power capping can improve

energy efficiency for existing systems, reduce power usage,
and save electricity bills. This is represented by the green zone
in Figure 2, where the performance degradation rate is smaller
than the capped node power rate, resulting in energy efficiency
greater than unity. One is encouraged to set their expectation
of performance degradation threshold to reset the zones. These
benefits make power capping a valuable strategy for promoting
greener computing.

VI. CONCLUSIONS

We developed a performance-power-efficiency model to
analyze the performance and efficiency of applications running
on a power-capped node. We used Rectified Linear Unit to
define a scalar metric for power spikes, which could negatively
impact data centers and utility grids, raising growing concerns
as HPC enters exascale. We then introduce a cost-based

10



Fig. 8: Potential system throughput relative to uncapped sys-
tem. Maximum throughput capping outperforming uniform
power capping by 20%.

incentive model that incorporates both power spike metric
and overall energy consumption. The model encourages data
centers to maintain stable power usage. This stability can po-
tentially reduce component wear-out and promote the adoption
of power management techniques, such as power capping.
Additionally, we introduced a throughput-enhancing policy
aimed at maximizing system throughput when designing or
procuring high-performance computing systems. The method-
ology can be applied to other architectures. We observe that
the default power state for NVIDIA A100 GPUs maximizes
efficiency only on applications dominated by (Z/D/H)GEMMs,
such as LAMMPS, NeMo-GPT3, and DGEMM in our study.
Any other application will run significantly more efficiently
at a lower power state. Application users can adopt our
methodology to run their workloads under an appropriate
power cap, contributing to greener computing practices. HPC
architects can utilize our cost model and throughput-enhancing
capping approach to incentivize less power variability and
maximize system throughput when designing or procuring
high-performance computing systems.
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