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We present the new features available in the recent release of SuperLU_DIST, Version 8.1.1. SuperLU_DIST is a distributed-

memory parallel sparse direct solver. The new features include (1) a 3D communication-avoiding algorithm framework which

trades of inter-process communication for selective memory duplication, (2) multi-GPU support for both NVIDIA GPUs and

AMD GPUs, and (3) mixed precision routines that perform single precision LU factorization and double precision iterative

reinement. Apart from the algorithm improvements, we also modernized the software build system to use CMake and Spack

package installation tools to simplify the installation procedure. Throughout the paper, we describe in detail the pertinent

performance-sensitive parameters associated with each new algorithmic feature, show how they are exposed to the users, and

give general guidance of how to set these parameters. We illustrate that the solvers performance both in time and memory

can be greatly improved after systematic tuning of the parameters, depending on the input sparse matrix and underlying

hardware.
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1 OVERVIEW OF SUPERLU_DIST

SuperLU_DIST 1,2 is a distributed-memory parallel sparse direct solver library for solving large sets of linear

equations �� = � [6]. Here � is a square, nonsingular, � × � sparse matrix, and � and � are dense � × ��ℎ�

matrices, where ��ℎ� is the number of right-hand sides and solution vectors. The matrix� need not be symmetric

or deinite; indeed, SuperLU_DIST is particularly appropriate for unsymmetric matrices, and it respects both

the unsymmetric values as well as the unsymmetric sparsity pattern. The library uses variations of Gaussian

elimination (LU factorization) optimized to take advantage of the sparsity of the matrix and modern high

performance computer architectures (speciically memory hierarchy and parallelism). It is implemented in ANSI

C, using MPI for communication, OpenMP for multithreading, and CUDA (or HIP) for NVIDIA (or AMD) GPUs.

The library includes routines to handle both real and complex matrices in single and double precisions, and some

functions with mixed precisions. The distributed-memory parallel algorithm consists of the following major

steps.

(1) Preprocessing

(2) Sparse LU factorization (SpLU)

1https://github.com/xiaoyeli/superlu_dist
2https://portal.nersc.gov/project/sparse/superlu/superlu_dist_code_html/index.html
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(3) Sparse triangular solutions (SpTRSV)

(4) Iterative reinement (IR) (optional)

The preprocessing in Step (1) transforms the original linear system �� = � into �̄� = �̄, so that the latter one

has more favorable numerical properties and sparsity structures. In SuperLU_DIST, typically� is irst transformed

into �̄ = ����������
�
� . Here �� and �� are diagonal scaling matrices to equilibrate the system, which tends to

reduce condition number of the matrix and avoid over/underlow during Gaussian elimination. �� and �� are

permutation matrices. The role of �� is to permute rows of the matrix to make diagonal elements large relative to

the of-diagonal elements (numerical pivoting). The role of �� is to permute rows and columns of the matrix to

minimize the ill-in in the � and � factors (sparsity reordering). Note that we apply �� symmetrically so that

the large diagonal entries remain on the diagonal. With these transformations, the linear system to be solved is:

(����������
�
� ) (���

−1
� )� = �������. In the software coniguration, each transformation can be turned of, or

can be achieved with diferent algorithms. Further algorithm details and user interfaces can be found in [6, 8].

After these transformations, the last preprocessing step is symbolic factorization which computes the distributed

nonzero structures of the � and� factors, and distributes the nonzeros of �̄ into � and� .

In Step (2), before the new Version-7 release (2021), the distributed memory code had been largely built upon

the design in the irst SuperLU_DIST paper [7]. The main ingredients of the parallel SpLU algorithm are:

• supernodal fan-out (right-looking) based on elimination DAGs,

• static pivoting with possible half-precision perturbations on the diagonal [7],

• 2D logical process arrangement for non-uniform block-cyclic mapping, based on the supernodal block

partition, and

• loosely synchronous scheduling with lookahead pipelining [14].

In Step (3), The parallel SpTRSV uses a block-cyclic layout for the � and� matrices as in the results of SpLU.

It also uses a message-driven asynchronous and dynamically scheduled algorithmÐdesigned to reduce the
communication and latency costs.

In Step (4), the user can optionally invoke a few steps of iterative reinement to improve the solution accuracy.
The computational kernels in the IR are SpTRSV and sparse matrix-vector multiplication (SpMV). Before this
release, the iterative reinement is performed in the same precision as that of SpLU and SpTRSV.

This release paper focuses on the new capabilities in Steps (2)-(4). These includes the new 3D communication-
avoiding algorithm framework (Section 2) , multi-GPU support (Section 3), mixed precision routines (Section 4),
and support for new build tools (Appendix C). Throughout the paper, we discuss all the parameters that may
inluence the code performance. These parameters can be set in a compile-time "options" structure, or by
environment variables (with capitalized names), the latter of which take precedence. Section 5 gives a summary
of the parameters and some tuning results. In particular, we illustrate that the performance can be greatly
improved by using an autotuner GPTune [9] for an optimal parameters setting. Finally, Section 6 summarizes our
contributions and gives perspectives of future developments.

2 3D COMMUNICATION-AVOIDING ROUTINES

We developed a novel 3D algorithm framework for sparse factorization and triangular solutions. This new
approach is motivated by the strong scaling requirement from exascale applications. Our novel 3D algorithm
framework for sparse factorization and triangular solutions alleviates communication costs by taking advantage
of the three-dimensional MPI process grid, the elimination tree parallelism, and the communication-memory
tradeofÐinspired from communication-avoiding algorithms for dense linear algebra in the last decade.
The 3D processes grid, conigured as � = �� × �� × �� (see Fig. 3a), can be considered as �� sets of 2D

processes layers. The distribution of the sparse matrices is governed by the supernodal elimination tree-forest
(etree-forest): the standard etree is transformed into an etree-forest which is binary at the top log2 (��) levels and

ACM Trans. Math. Softw.
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has �� subtree-forests at the leaf level (see Fig. 1a). The description of the tree partition and mapping algorithm
is described in [12, Section 3.3]. The matrices �, �, and� corresponding to each subtree-forest are assigned to
one 2D process layer. The 2D layers are referred to as Grid-0, Grid-1, . . ., up to (�� − 1) grids. Fig. 1b shows the
submatrix mapping to the four 2D process grids.

(a) 2-level etree partition
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(b) Matrix view on 4 process grids

Fig. 1. Illustration of the 3D parallel SpLU algorithm with 4 process grids. Note that, here �� refers to �[�:, �:]

typedef struct {

MPI_Comm comm; /* MPI communicator */

superlu_scope_t rscp; /* row scope */

superlu_scope_t cscp; /* column scope */

superlu_scope_t zscp; /* scope in third dimension */

gridinfo_t grid2d; /* for using 2D functions */

int iam; /* my process number in this grid */

int nprow; /* number of process rows */

int npcol; /* number of process columns */

int npdep; /* number of replication factor in Z-dimension */

int rankorder; /* = 0: Z-major ( default )

* = 1: XY-major (need set environment variable: SUPERLU_RANKORDER=XY)

*/

} gridinfo3d_t;

Fig. 2. 3D process grid definition.

An example for calling the 3D algorithm to solve a sparse linear system is provided by the sample program
EXAMPLE/pddrive3d.c, see https://github.com/xiaoyeli/superlu_dist/blob/master/EXAMPLE/pddrive3d.c. Fig. 2
shows the C structure deining the 3D process grid.

2.1 The 3D Process layout and its performance impact

A 3D process grid can be arranged in two formats:�� -major or � -major, see Fig. 3. In�� -major format, processes
with the same �� -coordinate and diferent � -coordinate have consecutive global ranks. Consequently, when
spawning multiple processes on a node, the spawned processes will have the same �� coordinate (except for
cases where �� is not a multiple of the number of processes spawned on the node). Alternatively, we can arrange
the 3D process grid in Z-major format where processes with the same � coordinate have consecutive global
ranks. This is the default ordering in SuperLU_DIST.

ACM Trans. Math. Softw.
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The � -major format can be better for performance as it keeps processes in a 2D grid closer. Hence it may
provide higher bandwidth for 2D communication, typically the bottleneck in communication. On the other hand,
the �� -major format can be helpful when using GPU acceleration. This can happen since the XY-major ordering
will keep more GPUs active during ancestor factorizations. In some cases, e.g., sparse matrices from non-planar
graphs, ancestor factorization can become compute dominant, and XY-major ordering helps by keeping more
GPUs active. For example, on 16 Haswell nodes of the NERSC Cori Cray XC40, the Z-major ordering was 0.85-1.3×
faster than the XY major ordering. Haswell compute nodes have dual-socket 16-core 2.3 GHz Intel Xeon E5-2698v3
CPUs. Note that this performance diference is system-dependent, depending on the hardware topology as well
as the job scheduler policy of the parallel machine.

(a) 3D process grid
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(b) łZž and łXYž major ordering

0 1 2 

3 4 5 

6 7 8 

9 10 11 

12 13 14 

15 16 17 

0 2 4 

6 4 5 

12 7 8 

1 3 5 

7 9 11 

13 15 17 

Z-major Grid XY-major Grid

Fig. 3. A logical 3D process grid and process configuration for two types of process arrangements.

The linear solver driver routine is pdgssvx3d, with the calling API explained here: https://portal.nersc.gov/
project/sparse/superlu/superlu_dist_code_html/pdgssvx3d_8c.html

The SpLU factorization progresses from leaf level � = log2 �� to the root level 0. The two main phases are local
factorization and Ancestor-Reduction.

(1) Local factorization. In parallel and independently, every 2D process grid performs the 2� factorization of
its locally owned submatrix of �. This is the same algorithm as the one before Version-7 [14]. The only
diference is that each process grid will generate a partial Schur complement update, which will be summed
up with the partial updates from the other process grids in the next phase.

(2) Ancestor-Reduction.After the factorization of level-� , we reduce the partial Schur complement of the ancestor
nodes before factorizing the next level. In the �-th level’s reduction, the receiver is the �2�−�+1-th process
grid and the sender is the (2� + 1)2�−� -th process grid, for some integer � . The process in the 2D grid which
owns a block ��, � has the same (� ,�) coordinate in both sender and receiver grids. So communication in the
ancestor-reduction step is point-to-point pair-wise and takes places along the �-axis in the 3D process grid.

We analyzed the asymptotic improvements for planar graphs (e.g., those arising from 2D grid or mesh
discretizations) and certain non-planar graphs (speciically for 3D grids and meshes). For a planar graph with

� vertices, our algorithm reduces communication volume asymptotically in � by a factor of O
(

︁

log�
)

and

latency by a factor of O (log�). For non-planar cases, our algorithm can reduce the per-process communication

volume by 3× and latency by O
(

�
1
3

)

times. In all cases, the extra memory needed to achieve these gains is a

small constant factor of the � and� memory. We implemented our algorithm by extending the 2D data structure
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used in SuperLU. Our new 3D code achieves empirical speedups up to 27× for planar graphs and up to 3.3× for
non-planar graphs over the baseline 2D SuperLU when run on 24,000 cores of a Cray XC30 (Edison at NERSC).
Please see [12] for comprehensive performance tests with a variety of real-world sparse matrices.

Remark. The algorithm structure requires that the z-dimension of the 3D process grid �� must be a power-of-
two integer. There is no restriction on the shape of the 2D grid �� and �� . The rule of thumb is to deine it as
square as possible. When square grid is not possible, it is better to set the row dimension �� slightly smaller than
the column dimension �� . For example, the following are good options for the 2D grid: 2x3, 2x4, 4x4, 4x8.

Inter-grid Load-balancing in the 3D SpLU Algorithm. The 3D algorithm provides two strategies for partitioning
the elimination tree to balance the load between diferent 2D grids. The SUPERLU_LBS environment variable
speciies which one to use.

• Nested Dissection (ND) strategy uses the partitioning provided by a nested dissection ordering. It works
well for regular grids. The ND strategy can only be used when the elimination tree is binary, i.e., when the
column order is also ND, and it cannot handle cases where the separator tree has nodes with more than
two children.
• Greedy Heuristic (GD) strategy uses a greedy algorithm to divide one level of the elimination tree. It
seeks to minimize the maximum load imbalance among the children of that node; if the imbalance in
children is higher than 20%, it further subdivides the largest child until the imbalance falls below 20%. The
GD strategy works well for arbitrary column ordering and can handle irregular graphs; however, if it is
used on heavily imbalanced trees, it leads to bigger ancestor sizes and, therefore, more memory than ND.
GD strategy is the default strategy unless SUPERLU_LBS=ND is speciied.

In summary, two parameters are speciic to the 3D SpLU algorithm:

• superlu_rankorder (SUPERLU_RANKORDER) deines the arrangement of the 3D process grid (default is
Z-major);
• superlu_lbs (SUPERLU_LBS) deines the inter-grid load-balancing strategy (default is GD).

3 GPU-ENABLED ROUTINES

In the current release, the SpLU factorization routines can oload certain computations to GPUs, which is mostly
in each Schur complement update step. We support both NVIDIA and AMD GPUs. We are actively developing
code for the Intel GPUs. To enable GPU oloading, irst a compile-time CMake variable needs to be deined:
-DTPL_ENABLE_CUDALIB=TRUE (for NVIDIA GPU with CUDA programming) or -DTPL_ENABLE_HIPLIB=TRUE
(for AMD GPU with HIP programming). Then, a runtime environment variable SUPERLU_ACC_OFFLOAD is used
to control whether to use GPU or not. By default, SUPERLU_ACC_OFFLOAD=1 is set. (‘ACC’ denotes ACCelerator.)

3.1 2D SpLU GPU algorithm and tuning parameters

The irst sparse LU factorization algorithm capable of oloading the matrix-matrix multiplication to the GPU was
published in [11]. The panel factorization and the Gather/Scatter operations are performed on the CPU. This
algorithm has been available since SuperLU_DIST version 4.0 of the code (October 2014); however, many users
are uncertain about using it correctly due to limited documentation. This section provides a gentle introduction
to GPU acceleration in SuperLU_DIST and its performance tuning.

Performing the Schur complement update requires some temporary storage to hold dense blocks. In an earlier
algorithm, at each elimination step, the Schur complement update is performed block by block. After performing
updates on a block, the temporary storage can be reused for the next block. A conspicuous advantage of this
approach is its memory eiciency, since the temporary storage required is bounded by maximum block size. The
maximum block size is a tunable parameter that trades of local performance of matrix-matrix multiplication

ACM Trans. Math. Softw.
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(GEMM) with inter-process parallelism. A typical setting for the maximum block size is 512 (or smaller). However,
a noticeable disadvantage of this approach is that it fails to fully utilize the abundance of local ine-grained
parallelism provided by GPUs because each GEMM is too small.
In [11], we modiied the algorithm in the Schur complement update step. At each step � , we irst copy the

individual blocks (in skyline storage) in the �th block row of � into a consecutive bufer U(�, :). The �(:, �) is
already in consecutive storage thanks to the supernodal structure. We then perform a single GEMM call to
compute � ← �(:, �) ×� (�, :). The matrix � is preallocated and the size of � needs to be suiciently large to
achieve close to peak GEMM performance. If the size of �(:, �) ×� (�, :) is larger than � , then we partition the
product into several large chunks such that each chunk requires temporary storage smaller than � . Given that
modern GPUs have considerably more memory than earlier generations, this extra memory can enable a much
faster runtime.

Now, each step of the Schur complement update consists of the following substeps:

(1) Gather sparse blocks� (�, :) into a dense BLAS compliant bufer U(�, :);
(2) Call dense GEMM � ← �(:, �) × U(�, :) (leading part on CPU, trailing part on GPU); and
(3) Scatter � [] into the remaining (�+1 : �,�+1 : � ) sparse � and� blocks.

It should be noted that the Scatter operation can require indirect memory access, and therefore, it can be as
expensive as the GEMM cost. The Gather operation, however, has a relatively low overhead compared to other
steps involved. The GEMM oload algorithm tries to hide the overhead of Scatter and data transfer between
the CPU and GPU via software pipelining. Here, we discuss the key algorithmic aspects of the GEMM oload
algorithm:

• To keep both the CPU and GPU busy, we divide the U(�, :) into a CPU part and GPU part, so that the
GEMM call is split into [ cpu : gpu ] parts: �(:, �) × U(�, [���]) and �(:, �) × U(�, [���]). To hide the data
transfer cost, the algorithm further divides the GEMM into multiple streams. Each stream performs its
own sequence of operations: CPU-to-GPU transfer, GEMM, and GPU-to-CPU transfer. Between these
streams, these operations are asynchronous. The GPU matrix multiplication is also pipelined with the
Scatter operation performed on the CPU.
• To ofset the memory limitation on the GPU, we devised an algorithm to divide the Schur complement
update into smaller chunks as {[��� : ���]1 | [��� : ���]2 | . . . }. These chunks depend on the available
memory on the GPU and can be sized by the user. A smaller chunk size will result in many iterations of the
loop.

There are three environment variables that can be used to control the memory usage and performance in the
GEMM oload algorithm:

• superlu_n_gemm (SUPERLU_N_GEMM) is the minimum value of the product ��� for a GEMM call to be
worth oloading to the GPU (default is 5000);
• superlu_num_gpu_streams (SUPERLU_NUM_GPU_STREAMS) deines the number of GPU streams to use (de-
fault is 8); and
• superlu_max_buffer_size (SUPERLU_MAX_BUFFER_SIZE) deines the maximum bufer size on GPU that
can hold the GEMM output matrix � (default is 256M in loating-point words).

This simple GEMM oload algorithm has limited performance gains. We observed a roughly 2-3× speedup
over the CPU-only code for a range of sparse matrices.

3.2 3D SpLU GPU algorithm and tuning parameters

We extend the 3D algorithm for heterogeneous architectures by adding the Highly Asynchronous Lazy Oload
(Halo) algorithm for co-processor oload [10]. Compared to the GPU algorithm in the 2D code ( Section 3.1),

ACM Trans. Math. Softw.
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this algorithm also oloads the Scatter operations of each Schur complement update step to the GPU (in addition
to the GEMM call).
On 4096 nodes of a Cray XK7 (Titan at ORNL) with 32,768 CPU cores and 4096 Nvidia K20x GPUs, the 3D

algorithm achieves empirical speedups up to 24× for planar graphs and 3.5× for non-planar graphs over the
baseline 2D SuperLU with co-processor acceleration.

The performance related parameters are:

• superlu_num_lookaheads (SUPERLU_NUM_LOOKAHEADS), number of lookahead levels in the Schur-complement
update (default is 10).
In order to reduce the critical path of the sequence of panel factorizations, we devised a software pipelining
method to overlap the panel factorization of the processes at step � + 1 with the Schur complement update
of the other processes at step � . When there are multiple remaining supernodes in the Schur complement,
the lookahead window (i.e., pipeline depth) can be greater than 1 [14]. This environment variable deines
the width of the lookahead window.
• superlu_mpi_process_per_gpu (MPI_PROCESS_PER_GPU) (default is 1).
The Halo algorithm uses GPU memory based on its availability. To do this correctly, the algorithm needs
to know how many MPI processes are running on a GPU, which can be diicult to determine on some
systems. This environment variable can be set to inform SuperLU_DIST that there are N ranks on each
GPU so that it can limit its memory usage of each GPU to 90% of available memory shared among all MPI
processes, which will, in turn, limit the amount of memory used by each rank.

3.3 2D SpTRSV GPU algorithm

When the 2D grid has one MPI rank, SpTRSV in SuperLU_DIST is parallelized using OpenMP for shared-memory
processors and CUDA or HIP for GPUs. Both versions of the implementations are based on an asynchronous level-
set traversal algorithm that distributes the computation workload across CPU threads and GPU threads/blocks [4].
The CPU implementation uses OpenMP taskloops and tasks for dynamic scheduling, while the GPU implementa-
tion relies on static scheduling. Fig. 4a shows the performance of SpTRSV (L and U solves) on 1 Cori Haswell
node with 1 and 8 OpenMP threads with a number of matrices. The speedup ranges between 1.4 and 4.3.

Fig. 4b shows the performance of L-solve using SuperLU_DIST (8 ORNL Summit IBM POWER9 CPU cores or
1 Summit V100 GPU) and cuSPARSE (1 Summit V100 GPU). The GPU SpTRSV in SuperLU_DIST consistently
outperforms cuSPARSE and is comparable to the 8-core CPU results. Here we choose 8 CPU cores as there are on
average 7 CPU cores per GPU on Summit, and 8 is the closest power of 2 number. Note that GPU performance
of the U-solve requires major improvements and is not available in the current release. That said, we compare
the performance of SpTRSV (both L and U solves) on one Summit node using three conigurations: 1. (baseline)
1-core L solve and 1-core U solve, 2. (GPU) 1-GPU L solve and 1-core U solve, and 3. (GPU+OpenMP) 1-GPU L
solve and 8-core U solve. The speedups comparing to the baseline coniguration are shown in Table 1.
When the 2D grid has more than 1 MPI rank, SpTRSV also supports OpenMP parallelism with less speedups.

In addition, the multi-GPU SpTRSV in SuperLU_DIST is under active development and will be available in future
releases.
The number of OpenMP threads can be controlled by the environment variable OMP_NUM_THREADS, and

the GPU SpTRSV can be turned on with the -DGPU_SOLVE compiler lag. The user needs to make sure that only 1

MPI rank is used for the 2D grid when GPU SpTRSV is employed.

4 MIXED-PRECISION ROUTINES

SuperLU_DIST has long supported four distinct loating-point types: IEEE FP32 real and complex, IEEE FP64
real and complex. Furthermore, the library allows all four datatypes to be used together in the same application.

ACM Trans. Math. Softw.
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(a) L and U solve (in Mflops) with 1 and 8 OpenMP
threads on Cori Haswell
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(b) L solve of SuperLU and cuSparse on CPU and GPU
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Fig. 4. Performance of SpTRSV with 1 MPI rank for a variety of sparse matrices.

copter2 epb3 gridgena vanbody shipsec1 dawson5

GPU vs. Baseline 1.6 1.7 1.6 1.6 1.54 1.6

GPU+OpenMP vs. Baseline 5.3 5.7 5.3 4.4 4.1 5.2

Table 1. Speedup of GPU SpTRSV compared with sequential CPU SpTRSV.

Recent hardware trends have motivated increased development of mixed-precision numerical libraries, mainly
because hardware vendors have started designing special-purpose units for low precision arithmetic with higher
speed. For direct linear solvers, a well understood method is to use lower precision to perform factorization
(expensive) and higher precision to perform iterative reinement (IR) to recover accuracy (cheap). For a typical
sparse matrix resulting from the 3D inite diference discretization of a regular mesh, the SpLU needs O

(

�2
)

lops

while each IR step needs only O
(

�4/3
)

lops (including SpTRSV and SpMV).
For dense LU and QR factorizations, the beneit of lower precision format comes mainly from accelerated

GEMM speed. But in the sparse case, the dimensions of the GEMM are generally smaller and of non-uniform
size throughout factorization. Therefore, the speed gain from GEMM alone is limited. In addition to GEMM, a
nontrivial cost is the Scatter operation. From our tests, we found that the fraction of time in GEMM usually is
less than 50%. Because of this, the TensorCore version of GEMM calls led to a less than 5% speedup for the whole
SpLU. When comparing FP32 with the FP64 versions of SpLU, we observed about 50% speedup with the FP32
version.

We recall the IR algorithm using three precisions in Algorithm 1 [2, 3]. This algorithm is already available as
xGERFSX functions in LAPACK, where the input matrix is dense and so is LU. The following three precisions
may be used:

• �� is the working precision; it is used for the input data � and �, and output � .
• �� is the precision for the computed solution � (� ) . We require �� ≤ �� , possibly �� ≤ �2� if necessary for
componentwise convergence.
• �� is the precision for the residuals � (� ) . We usually have �� ≤ �2� , i.e., at least twice the working precision.
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(a) audikw_1 convergence history (b) Ga19As19H2 convergence history

Fig. 5. Convergence history of Algorithm 1 when applied to two sparse linear systems. The vertical line in each plot
corresponds to the IR steps taken when our stopping criteria are satisfied. Here, the working precision is �� = 2−24. The blue
lines are all single. The red lines correspond to �� = �� = 2−53, but factorization is in single.

Algorithm 1 Three-precisions Iterative Reinement (IR) for Direct Linear Solvers

1: Solve �� (1) = � using the basic solution method (e.g., LU or QR) ⊲ (��)
2: � = 1
3: repeat

4: � (� ) ← � −�� (� ) ⊲ (�� )
5: Solve ��� (�+1) = � (� ) using the basic solution method ⊲ (��)
6: Update � (�+1) ← � (� ) + �� (�+1) ⊲ (�� )
7: � ← � + 1
8: until � (� ) is łaccurate enoughž
9: return � (� ) and error bounds

Algorithm 1 converges with small normwise (or componentwise) error and error bound if the normwise (or

componentwise) condition number of � does not exceed 1/(���), where �
def
=

︁

���� (��� (�(�, :))). Moreover,
this IR procedure can return to the user both normwise and componentwise reliable error bounds. The error
analysis in [2] should carry through to the sparse cases.

We implemented Algorithm 1 in SuperLU_DIST, using two precisions in IR:

• �� = 2−24 (IEEE-754 single precision), �� = �� = 2−53 (IEEE-754 double precision)

In Figure 5, the left two plots show the convergence history of two systems, in both normwise forward and
backward errors, ���� and ���� , respectively (deined below). We perform two experiments: one using single
precision IR, the other using double precision IR. As can be seen, single precision IR does not reduce much ���� ,
while double precision �� delivers ���� close to �� . The IR time is usually under 10% of the factorization time.
Overall, the mixed-precision speed is still faster than using pure FP64, see Table 2.

The 2D driver routine for this mixed-precision approach is psgssvx_d2, where the suix "d2" denotes that the
intermediate � vector and � vector internal to the IR routine are carried in double precision.
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Table 2. Parallel solution time (seconds) (including SpLU and IR): purely double precision, purely single precision, and mixed
precision (FP32 SpLU + FP64 IR). ORNL Summit using up to 8 nodes, each node uses 6 CPU Cores (C) and 6 GPUs (G).

Matrix Precision 6 C+G 24 C+G 48 C+G Matrix Precision 6 C+G 24 C+G 48 C+G

audikw_1 Double 65.9 21.1 18.9 Ga19As19H42 Double 310.9 62.4 34.3

Single 45.8 13.8 10.5 Single 258.1 48.2 25.8

Mixed 49.2 13.9 11.4 Mixed 262.8 48.8 26.1

The only diference from the one-precision routine psgssvx is the output array err_bounds[] (error bounds).
For each right-hand side, we return the following three quantities:

• err_bounds[0]: normwise forward error bound: ����� = max
(

∥�� (�+1) ∥∞/∥� (� ) ∥∞
1−����

, ���

)

≈
∥� (� )−� ∥∞
∥� ∥∞

where, �max
def
= max�≤�

∥�� ( �+1) ∥∞
∥�� ( � ) ∥∞

is the estimate of the convergence rate of � (� ) .

• err_bounds[1]: componentwise forward error bound: max
(

∥�−1�� (� ) ∥∞
1−�̂���

, ���

)

≈ max�

�

�

�

�

�
(� )

�
−��

��

�

�

�

�

where, � = ����(�), �̂max = max�≤�
∥��� ( �+1) ∥∞
∥��� ( � ) ∥∞

is the estimate of the convergence rate of �−1� (� )

• err_bounds[2]: componentwise backward error: max�

(

|�−�� (� ) |�
( |� | |� (� ) |+|� | )�

)

5 SUMMARY OF TUNING PARAMETERS AND TUNING RESULTS

Throughout all phases of the solution process, a number of algorithm parameters can inluence the solver’s
performance. These parameters can be modiied by the user. For each user-callable routine, the irst argument is
usually an input "options" argument, which points to the structure containing a number of algorithm choices.
These choices are determined at compile time. The second column in Table 3 lists the named ields in the options
argument. The fourth column lists all the possible values and their corresponding C’s enumerated constant names.
The user should call the following routine to set up the default values.

superlu_dist_options_t options;

set_default_options_dist(&options);

After setting the defaults, the user can modify each default, for example:

options.RowPerm = LargeDiag_HWPM;

For a subset of these parameters, the user can change them at runtime via environment variables. These
parameters are listed in the third column in Table 3. At various places of the code, an environment inquiry
function SRC/sp_ienv.c is called to retrieve the values of the environment variables.

Two algorithm blocking parameters can be changed at runtime: SUPERLU_MAXSUP and SUPERLU_RELAX. SUPERLU_MAXSUP
sets the maximum size of a supernode. That is, if the number of columns in a supernode exceeds this value, we
will split this supernode into two supernodes. Setting this parameter to a large value results in larger blocks
and generally better performance for threaded and GPU GEMM. Increasing it limits the number of available
parallel tasks across MPI processes. Figure 6a illustrates how performance, as measured in Glops, varies with
SUPERLU_MAXSUP on a single node of Cori Haswell when using 32 OpenMP threads. For smaller matrices, such as
this one (torso3), performance is near its peak when SUPERLU_MAXSUP equals 128, which is over 50× faster than
when this value is set to 4. However, above this value, the performance starts to taper of.

SUPERLU_RELAX is a relaxation parameter: if the number of nodes (columns) in a subtree of the elimination
tree is less than this value, this subtree is treated as one supernode, regardless of the row structures. That means,
we pad explicit zeros to enforce that all the columns within this relaxed supernode have the same row structure.
The advantage of this padding is to mitigate many small supernodes at the bottom of the elimination tree. On

ACM Trans. Math. Softw.



SuperLU_DIST Release version-8 • 11

(a)

2 4 8 16 32 64 128 256 512
Max Supernode Size

2 1

20

21

22

23

24

25

26

Pe
rfo

rm
an

ce
 in

 G
FL

OP
/s

ec

torso3-OMP_NUM_THREADS=32,Intel-Haswell

(b)

4 8 16 32 64 128 256
SUPERLU_RELAX

0

20

40

60

80

100

120

%
 M

em
or

y 
re

la
tiv

e 
to

 S
UP

ER
LU

_R
EL

AX
=4

100 100 102 104
108

115

130Mem(L+U) Mem(IDX)

7

8

9

10

11

12

 Fa
ct

or
iza

tio
n 

tim
e 

in
 se

co
nd

s

Factorization Time

Fig. 6. Impact of maximum supernode size (SUPERLU_MAXSUP) and supernodal relaxation (SUPERLU_RELAX) on perfor-
mance and memory. The machine is NERSC Cori Haswell node. The matrix is torso3 from SuiteSparse.

the other hand, a large value of SUPERLU_RELAX may introduce too many zeros which in turn propagate to the
ancestors of the elimination tree, resulting in a large number of ill-ins in the L and U factors. Figure 6b shows
the impact of this parameter on the memory use (left axis) and factorization time. A value of 32 or 64 represents
a good tradeof between memory and time.

The optimal settings of these parameters are matrix-dependent and hardware-dependent. Additionally, several
other parameters and environment variables listed in Table 3 are performance critical for the 2D and 3D, CPU and
GPU algorithms described in Sections 2, 3.1 and 3.2. It is a daunting task for manual tuning to ind the optimal
setting of these parameters. Now in Sections 5.1 - 5.3 we show how an autotuner can signiicantly simplify this
task. Here we leverage an autotuner called GPTune [9] to tune the performance (time and memory) of SpLU. We
consider two example matrices from the Suitesparse matrix collection, G3_circuit from circuit simulation and
H2O from quantum chemistry simulation. For all the experiments, we consider a two-objective tuning scenario
and generate a Pareto front from the samples demonstrating the tradeof between memory and CPU requirement
of SpLU.

5.1 3D CPU SpLU parameter tuning

For the 3D CPU SpLU algorithm (2), we use 16 NERSC Cori Haswell nodes and the G3_circuit matrix. The number
of OpenMP threads is set to 1, so there are a total of ������ = 512 MPI ranks. We consider the following tuning
parameters [ SUPERLU_MAXSUP, SUPERLU_RELAX, num_lookaheads, �� , ��]. We set up GPTune to generate 100
samples. All samples and the Pareto front are plotted in Fig. 7a. The samples on the Pareto front and the default
one are shown in Table 4, one can clearly see that by reducing the computation granularity (SUPERLU_MAXSUP,
SUPERLU_RELAX) and increasing �� , one can signiicantly improve the SpLU time while using slightly more
memory.

5.2 2D GPU SpLU parameter tuning

For the 2D GPU SpLU algorithm (3.1), we use 2 NERSC Cray EX Perlmutter GPU compute nodes with 4 MPI
ranks per node and the H2O matrix. Perlmutter GPU compute nodes consist of a single 64-core 2.45 GHz AMD
EPYC 7763 CPU and four NVIDIA A100 (40GB HBM2) GPUs. The number of OpenMP threads is set to 16.
We consider the following tuning parameters [ ColPerm, SUPERLU_MAXSUP, SUPERLU_RELAX, SUPERLU_N_GEMM ,
SUPERLU_MAX_BUFFER_SIZE, �� ]. We set up GPTune to generate 100 samples. All samples and the Pareto front
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Table 3. List of algorithm parameters used in various phases of the linear solver. The third column lists the environment
variables that can be reset at runtime. parameters must be set in the options{} structure input to a driver routine.

phase options env variables values in 2D or 3D algo.

(compile-time) (runtime) (enum constants)

Pre- Equil NO, YES (default) 2d, 3d

process RowPerm 0: NOROWPERM 2d, 3d

1: LargeDiag_MC64 (default) 2d, 3d

2: LargeDiag_HWPM 2d, 3d

3: MY_PERMR 2d, 3d

ColPerm 0: NATURAL 2d, 3d

1: MMD_ATA 2d, 3d

2: MMD_AT_PLUS_A 2d, 3d

3: COLAMD 2d, 3d

4: METIS_AT_PLUS_A (default) 2d, 3d

5: PARMETIS 2d, 3d

6: ZOLTAN 2d, 3d

7: MY_PERMC 2d, 3d

ParSymbFact YES, NO (default) 2d, 3d

SpLU ReplaceTinyPivot YES, NO (default) 2d, 3d

Algo3d YES, NO (default) 3d

DiagInv YES, NO (default) 2d

num_lookaheads SUPERLU_NUM_LOOKAHEADS default 10 2d, 3d (Section 3.2)

superlu_maxsup SUPERLU_MAXSUP default 256 2d, 3d (Section 5)

superlu_relax SUPERLU_RELAX default 60 2d, 3d

superlu_rankorder SUPERLU_RANKORDER default Z-major 3d (Section 2.1)

superlu_lbs SUPERLU_LBS default GD 3d (Section 2.1)

superlu_acc_oload SUPERLU_ACC_OFFLOAD 0, 1 (default) 2d, 3d (Section 3)

superlu_n_gemm SUPERLU_N_GEMM default 5000 2d (Section 3.1)

superlu_max_bufer_size SUPERLU_MAX_BUFFER_SIZE default 250M words 2d, 3d (Section 3.1)

superlu_num_gpu_streams SUPERLU_NUM_GPU_STREAMS default 8 2d (Section 3.1)

superlu_mpi_process_per_gpu SUPERLU_MPI_PROCESS_PER_GPU default 1 3d (Section 3.2)

OMP_NUM_THREADS default system dependent 2d, 3d (Section 5.4)

OMP_PLACES default system dependent 2d, 3d

OMP_PROC_BIND default system dependent 2d, 3d

OMP_NESTED default system dependent 2d, 3d

OMP_DYNAMIC default system dependent 2d, 3d

SpTRSV IterReine 0: NOREFINE (default) 2d, 3d

(Section 4) 1: SLU_SINGLE

2: SLU_DOUBLE

Others PrintStat NO, YES (default) 2d, 3d

are plotted in Fig. 7b. The samples on the Pareto front and the default one are shown in Table 5. Compared to the
default coniguration, both the time and memory can be signiicantly improved by increasing the computation
granularity (larger SUPERLU_MAXSUP, SUPERLU_RELAX). Also, less GPU oload (larger SUPERLU_N_GEMM) leads to
better performance.
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Fig. 7. Samples generated by GPTune for the three tuning experiments. Only valid samples are ploted.

5.3 3D GPU SpLU parameter tuning

For the 3D GPU SpLU algorithm in Section 3.2, we use 2 NERSC Perlmutter GPU nodes with 4 MPI ranks per node
and the H2O matrix. The number of OpenMP threads is set to 16, and ������ = 8. We consider the following
tuning parameters [ ColPerm, SUPERLU_MAXSUP, SUPERLU_RELAX, SUPERLU_MAX_BUFFER_SIZE, �� , ��]. We set
up GPTune to generate 200 samples. All samples and the Pareto front are plotted in Fig. 7c. The samples on the
Pareto front and the default one are shown in Table 6. Compared to the default coniguration, both the time and
memory utilization can be signiicantly improved by increasing the computation granularity and decreasing GPU
bufer sizes. ColPerm=‘4’ (METIS_AT_PLUS_A) is always preferable in terms of memory usage. The efects of ��
and �� are insigniicant as only 8 MPI ranks are used.

SUPERLU_MAXSUP SUPERLU_RELAX num_lookaheads �� �� Time (s) Memory (MB)

Default 256 60 10 16 1 5.6 2290

Tuned 31 25 17 16 1 21.9 2253

Tuned 53 35 7 4 4 1.64 2360

Table 4. Default and optimal samples returned by GPTune for the 3D CPU SpLU algorithm. Note that �� is derived by
�� = 512/(����), as the total MPI count is fixed at 512.

ColPerm SUPERLU_MAXSUP SUPERLU_RELAX SUPERLU_N_GEMM SUPERLU_MAX_BUFFER_SIZE �� Time Memory
(s) (MB)

Default ‘4’ 256 60 1000 2.5E8 4 20.8 6393

Tuned ‘4’ 154 154 2048 2.68E8 2 13.5 6011

Tuned ‘4’ 345 198 262144 6.7E7 2 13.2 6813

Tuned ‘4’ 124 110 8192 1.3E8 2 14.6 5976

Table 5. Default and optimal samples returned by GPTune for the 2D GPU SpLU algorithm. Note that �� is derived by
�� = 8/�� , as the total MPI count is fixed at 8.
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ColPerm SUPERLU_MAXSUP SUPERLU_RELAX SUPERLU_MAX_BUFFER_SIZE �� �� Time (s) Memory (MB)

Default ‘4’ 256 60 2.5E8 4 1 25.3 3520

Tuned ‘4’ 176 143 1.34E8 2 1 12.1 3360

Tuned ‘4’ 327 182 1.34E8 4 2 7.4 3752

Tuned ‘4’ 610 200 3.34E7 8 1 12.5 3280

Tuned ‘4’ 404 187 3.34E7 1 2 8.76 3744

Tuned ‘4’ 232 199 3.34E7 4 2 6.7 3936

Table 6. Default and optimal samples returned by GPTune for the 3D GPU SpLU algorithm. Note that �� is calculated from
�� and �� as the total MPI count is fixed at 8.

5.4 Tuning of OpenMP Intra-node Parallelism

SuperLU_DIST can use shared-memory parallelism on CPUs in two ways. The irst is by using the multithreaded
BLAS library for linear-algebraic operations. This is independent of the implementation of SuperLU_DIST itself.
The second is through SuperLU_DIST’s direct use of OpenMP pragmas for explicit parallelization of some
computations.

OpenMP is portable across a wide variety of CPU architectures and operating systems. OpenMP ofers a shared-
memory programming model, which can be easier to use than a message-passing programming model. In this
section, we discuss the advantages and limitations of using OpenMP, and ofer some performance considerations.

Advantage of OpenMP Parallelism: We have empirically observed that hybrid programming with MPI+OpenMP
often requires less memory than pure MPI. This is because OpenMP does not require additional memory for
message passing bufers. In most cases, correctly tuned hybrid programming with MPI+OpenMP provides better
performance than pure MPI.
Limitations of OpenMP Parallelism: Beneits of OpenMP parallelism is often less predictable than pure MPI

parallelism because of non-determinism in the threading layer, CPU hardware, and thread ainities. Finding the
right coniguration for OpenMP may take some trials and errors because performance depends on many factors:
CPU architecture, number of cores and threads, the threading library being used, and the operating system.
OpenMP threading may cause a signiicant slowdown if parameters are chosen incorrectly. Slowdown can be due
to false-sharing, NUMA efects, hyperthreading, incorrect or suboptimal thread ainities, or underlying threading
libraries.
OpenMP performance tuning: To get the best performance, we recommend tuning the following OpenMP

variables environment variables. OMP_NUM_THREADS governs the number of OpenMP threads that SuperLU_DIST
can use. To avoid resource over-subscription, the product of MPI processes per node and OpenMP threads should
be less than or equal to available physical cores. OMP_PLACES deines where the threads may run. Possible values
are cores, threads, or socket. OMP_PROC_BIND controls the thread migration. When the OMP_PROC_BIND directive
is set to TRUE, OpenMP threads should not be moved; when FALSE they may move between hardware cores and
sockets. In general, when OMP_PLACES is set, the setting of OMP_PROC_BIND should be set to TRUE.

The other two less commonly used OpenMP environment variables are OMP_NESTEDÐcontrols levels of nested
parallelism, and OMP_DYNAMICÐdetermineswhether to change the number of threads or thread groups dynamically.
Both variables are set to False by default, which works well in most systems. For performance debugging purposes,
however, we can explicitly set the two variables.
In Fig. 8, we show the impact of diferent OpenMP variables and hybrid MPI-OpenMP conigurations on the

SpLU speed on Cori Haswell nodes at NERSC. Figure 8a shows the best performance achieved for diferent
OpenMP and NUMA settings variables for purely threaded conigurations. Figure 8b shows the performance for
diferent MPI×OpenMP threads on four Haswell nodes of Cori. It should be noted that, hybrid conigurations, i.e.
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conigurations with more than one OpenMP threads per MPI process, tends to require far less memory for MPI’s
internal bufers [11]. In general, using 2-8 OpenMP threads per MPI process gives good performance across a
wide range of matrices.

(a) Best performance for diferent OMP variables
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Fig. 8. OpenMP performance tuning for SpLU on Cori Haswell nodes at NERSC. In Fig. 8a, each bar shows the best
performance obtained for a variableśvalue pair by an exhaustive parametric search for the other four variables; the test
matrix is torso3 and number of threads is 32.

The OpenMP API allows control of these variables programmatically. This becomes useful when the application
and SuperLU require diferent OpenMP conigurations. For best performance, the user can use our autotuner
GPTune to tune these variables automatically, see Section 5.

6 CONCLUSION

In this paper, we presented the recently added features in the distributed-memory sparse direct solver SuperLU_DIST.
They represent signiicant algorithmic advances, including (1) communication-avoiding 3D sparse LU factor-
ization, (2) support of multi-GPU oloading, and (3) mixed-precision computations for higher speed and lower
memory consumption. Incorporating these algorithmic changes required solving challenging software engineer-
ing problems while bringing the research prototype code to the production code that is usable by the users.
Furthermore, we documented the parameters that may impact the solver’s performance. The parameters we
discussed include those in the SuperLU_DIST library as well as some system’s parameters related to OpenMP.
Since the sparse solvers performance are sensitive to both sparse matrix structures and the underlying computer
architectures, we show that an autotuner framework, such as GPTune, provides a powerful tool to help choose
the best parameters setting.
We have plans to incorporate several recent fruitful research results into the future releases of the software.

These include (1) communication-avoiding 3D SpTRSV [13] and (2) communication-hiding SpTRSV via one-sided
MPI and NVSHMEM direct GPU-to-GPU communication [4, 5].
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APPENDIX

A NAMING CONVENTION AND CODE DOCUMENTATION

The routines in SuperLU_DIST are divided into driver routines and computational routines. The routine names
are inspired by the LAPACK and ScaLAPACK naming convention. For example, the 2D linear solver driver is
pdgssvx, where ‘p’ means parallel, ‘d’ means double precision,3 ‘gs’ means general sparse matrix format, and
‘svx’ means solving a linear system. Below is a list of double precision user-callable routines.

• Driver routines: pdgssvx (driver for the old 2D algorithms), pdgssvx3d (driver for the new 3D algorithms
in Section 2).
• Computational routines: pdgstrf and pdgstrs are respectively triangular factorization SpLU and triangular
solve in the 2D process grid. pdgstrf3d is triangular factorization SpLU in the 3D process grid. These
routines take a preprocessed linear system as an input. An experienced user can use them directly in
the application code as they can provide greater lexibility. For a new user, however, using them can be
cumbersome and error-prone. We recommend using driver routines, which are easier to use.
• The pddrive and pddrive3d examples in the EXAMPLE/ directory call the respective drivers pdgssvx and
pdgssvx3d to solve linear systems. Other examples in the same directory, such as pddrive1, pddrive2, etc.,
illustrate how to reuse the preprocessing results for a sequence of linear systems with similar structures.

The Doxygen generated documentation for all the routines is available at https://portal.nersc.gov/project/sparse/
superlu/superlu_dist_code_html/. Each routine begins with a comment that breaks down input/output arguments
and explains the functions of the routine. Although the original User’s Guide contains comprehensive description
of various internal data structures and algorithms [6], it does not contain the new features presented here.

B FORTRAN 90 INTERFACE

In the FORTRAN/ directory, there are Fortran 90 module iles that implement the wrappers for Fortran programs
to access the full functionality of the C functions in SuperLU_DIST. The design is based on object-oriented
programming concept: deine opaque objects in the C space, which are accessed via handles from the Fortran
space. All SuperLU_DIST objects (e.g., process grid, LU structure) are opaque from the Fortran side. They are
allocated, deallocated and operated at the C side. For each C object, we deine a Fortran handle in Fortran’s user
space, which points to the C object and implements the access methods to manipulate the object. All handles are
64-bit integer type. For example, consider creating a 3D process grid. The following code snippet shows what are
involved from the Fortran and C sides.

• Fortran side

/* Declare handle: */

integer(64)::f_grid3d

/* Call C wrapper routine to create 3D grid pointed to by "f_grid3d": */

call f_superlu_gridinit3d(MPI_COMM_WORLD, nprow, npcol, npdep, f_grid3d)

• C side

/* Fortran-to-C interface routine: */

void f_superlu_gridinit3d(int *MPIcomm, int *nprow, int *npcol,int *npdep, int64_t *f_grid3d)

{

/* Actual call to C routine to create grid3d structture in *grid3d{} */

superlu_gridinit3d(f2c_comm(MPIcomm),*nprow, *npcol, *npdep, (gridinfo3d_t *) *f_grid3d);

3We support four datatypes: ‘s’ (FP32 real), ‘d’ (FP64 double), ‘c’ (FP32 complex) and ‘z’ (FP64 complex). Throughout the paper, we use the ‘d’

version of the routine names.
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}

Here, the Fortran handle f_grid3d essentially acts as a 64-bit pointer pointing to the internal 3D grid structure,
which is created by the C routine superlu_gridinit3d(). This structure (see Fig. 2) sits in the C space and is
invisible from the Fortran side.
For all the user-callable C functions, we provide the corresponding Fortran-to-C interface functions, so that

the Fortran program can access all the C functionality. These interface routines are implemented in the iles
superlu_c2f_wrap.c (precision-independent) and superlu_c2f_dwrap.c (double precision). The Fortran-to-
C name mangling is handled by CMake through the header ile SRC/superlu_FCnames.h. The module ile
superlupara.f90 deines all the constants matching the enum constants deined in the C side (see Table 3).
The module ile superlu_mod.f90 implements all the access methods (set/get) for the Fortran side to access the
objects created in the C user space.

C INSTALLATION WITH CMAKE OR SPACK

C.1 Dependent external libraries

One can have a bare minimum installation of SuperLU_DIST without any external dependencies, although the
following external libraries are useful for high performance: BLAS, (Par)METIS (sparsity-preserving ordering),
CombBLAS (parallel numerical pivoting) and LAPACK (for inversion of dense diagonal block).

C.2 CMake installation

The user will need to create a build tree from which to invoke CMake. The following describes how to deine the
external libraries.

BLAS (highly recommended)

If the user has a fast BLAS library on their machine, the user can link it using the following CMake
deinition:

-DTPL_BLAS_LIBRARIES="<BLAS library name>"

Otherwise, the CBLAS/ subdirectory contains the part of the C BLAS (single threaded) needed by SuperLU_DIST,
but it is not optimized for performance. The user can compile and use this internal BLAS with the following
CMake deinition:

-DTPL_ENABLE_INTERNAL_BLASLIB=ON

ParMETIS (highly recommended)

http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/parmetis-4.0.3.tar.gz
The user can install ParMETIS and deine the two environment variables as follows:

export PARMETIS_ROOT=<Prefix directory of the ParMETIS installation>

export PARMETIS_BUILD_DIR=${PARMETIS_ROOT}/build/Linux-x86_64

Note that by default, we use serial METIS as the sparsity-preserving ordering, which is available in the
ParMETIS package. The user can disable ParMETIS during installation with the following CMake deinition:
-DTPL_ENABLE_PARMETISLIB=OFF. In this case, the default ordering is set to be MMD_AT_PLUS_A.
See Table 3 for all the possible ColPerm options.
In order to use parallel symbolic factorization function, the user needs to use ParMETIS ordering.

LAPACK (highly recommended)

In the triangular solve routine, we may use LAPACK to explicitly invert the dense diagonal block to improve
the performance. The user can use it with the following CMake option:
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-DTPL_ENABLE_LAPACKLIB=ON

CombBLAS (optional)

https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/index.html
In order to use parallel weighted matching HWPM (Heavy Weight Perfect Matching) for numerical pre-
pivoting [1], the user needs to install CombBLAS and deine the environment variables:

export COMBBLAS_ROOT=<Prefix directory of the CombBLAS installation>

export COMBBLAS_BUILD_DIR=${COMBBLAS_ROOT}/_build

Then, install with the CMake option:

-DTPL_ENABLE_COMBBLASLIB=ON

Use GPU

The user can enable (NVIDIA) GPU with CUDA with the following CMake option:

-DTPL_ENABLE_CUDALIB=TRUE

The user can enable (AMD) GPU with HIP with the following CMake option:

-DTPL_ENABLE_HIPLIB=TRUE

For a simple installation with default settings:

mkdir build ; cd build;

cmake .. \

-DTPL_PARMETIS_INCLUDE_DIRS="${PARMETIS_ROOT}/include;\

${PARMETIS_ROOT}/metis/include" \

-DTPL_PARMETIS_LIBRARIES="${PARMETIS_BUILD_DIR}/libparmetis/libparmetis.a;\

${PARMETIS_BUILD_DIR}/libmetis/libmetis.a" \

There are a number of example build scripts in the example_script/ directory, with ilenames run_cmake_build_*.sh
that target various machines.

To actually build (compile), type: ‘make’.
To install the libraries, type: ‘make install’.
To run the installation tests, type: ‘test’. (The outputs are in ile: ‘build/Testing/Temporary/LastTest.log’) or,

‘ctest -D Experimental’, or, ‘ctest -D Nightly’.
Note that the parallel execution in ctest is invoked by the "mpiexec" command, which is from the MPICH

environment. If the MPI is not MPICH/mpiexec based, the test execution may fail. The user can pass the deinition
option -DMPIEXEC_EXECUTABLE to CMake. For example on Cori at NERSC, the user will need the following:
cmake .. -DMPIEXEC_EXECUTABLE=/usr/bin/srun.

Or, the user can always go to TEST/ directory to perform testing manually.
The following list summarizes the commonly used CMake deinitions. In each case, the irst choice is the default

setting. After running a ‘cmake’ installation, a coniguration header ile is generated in SRC/superlu_dist_config.h,
which contains the key CPP deinitions used throughout the code.

-DTPL_ENABLE_INTERNAL_BLASLIB=OFF | ON

-DTPL_ENABLE_PARMETISLIB=ON | OFF

-DTPL_ENABLE_LAPACKLIB=OFF | ON

-DTPL_ENABLE_COMBBLASLIB=OFF | ON

-DTPL_ENABLE_CUDALIB=OFF | ON

-DCMAKE_CUDA_FLAGS=<...>

-DTPL_ENABLE_HIPLIB=OFF | ON

-DHIP_HIPCC_FLAGS=<...>
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-Denable_complex16=OFF | ON (double-complex datatype)

-Denable_single=OFF | ON (single precision real datatype)

-DXSDK_INDEX_SIZE=32 | 64 (integer size for indexing)

-DBUILD_SHARED_LIBS= OFF | ON

-DCMAKE_INSTALL_PREFIX=<...>

-DCMAKE_C_COMPILER=<MPI C compiler>

-DCMAKE_C_FLAGS=<...>

-DCMAKE_CXX_COMPILER=<MPI C++ compiler>

-DCMAKE_CXX_FLAGS=<...>

-DXSDK_ENABLE_Fortran=OFF | ON

-DCMAKE_Fortran_COMPILER=<MPI F90 compiler>

C.3 Spack installation

Spack installation of SuperLU_DIST is a fully automated process. Assume that the develop branch of Spack
(https://github.com/spack/spack) is used. The user can ind available compilers via: spack compilers. In the
following, let’s assume the available compiler is gcc@9.1.0. The installation supports the following variants:

Use 64-bit integer

The user can enable 64-bit integer with:

spack install superlu-dist@master+int64%gcc@9.1.0

Use GPU

The user can enable (NVIDIA or AMD) GPUs with:

spack install superlu-dist@master+cuda%gcc@9.1.0

spack install superlu-dist@master+rocm%gcc@9.1.0

Test installation

The user can run a few smoke tests of the spack installation via

spack test run superlu-dist@master (pick the appropriate installation if multiple variants available)
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